If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-11n+1=0
a = 1; b = -11; c = +1;
Δ = b2-4ac
Δ = -112-4·1·1
Δ = 117
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{117}=\sqrt{9*13}=\sqrt{9}*\sqrt{13}=3\sqrt{13}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-3\sqrt{13}}{2*1}=\frac{11-3\sqrt{13}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+3\sqrt{13}}{2*1}=\frac{11+3\sqrt{13}}{2} $
| 2(3y-6)=10y+10 | | 8x+56=x+21 | | 6x^2+15x+8=0 | | 6w-10=38 | | 3x+3/2x+2+3x-1+2x+4+2x=180 | | 7/2a=2/a+3/8 | | 2x+85=40 | | 7x-7=3x+41 | | 8/13/5=25/x | | 5(x-6)=2(x+3 | | (2x+1)(x-2)=63 | | -64x+176x-121=0 | | 3x-24=×+12 | | X-4/10x=72 | | 4t+1/4=t+6/8+t*4/8 | | 8(2x+5)=126 | | 3x+26/5+x+29/4=15 | | 9x/8-2=70 | | 18+5=p+2 | | 3x+12/5+x+24/6=11 | | x-4/5+4/5=-x/2 | | 71+16=100-p | | 10x-(9x-6)=14 | | 76=31-5(x-4) | | -2p-2(6-5p)=6(p-6)-8 | | -2p-3(2-4p)=9(p-4)-18 | | 3(2x+3)=-4(x-5) | | 7(d-3)=-22 | | x+(2x+1)+(3x-1)=180 | | x+60=4x-30 | | 45+2x+(180-(3x+4))=180 | | (3/2)x=5 |